ぽんず製造所

当ブログの記事を参考にして行った事により、いかなる不都合が発生としても当方は一切の責任を負いません。全て各自の自己責任でお願いします。

テスラコイルでけものフレンズの曲を演奏した

最近記事のネタもないし、紹介を忘れていた(?)動画のことでも書こうと思います。


随分前のことですが、けものフレンズOP曲の「ようこそジャパリパークへ」をテスラコイルで演奏しました。



本来NT京都の宣伝用に作った動画です。
のほほーんと適当に投稿したらけもフレブームに乗ったようでなんかメチャクチャ伸びてしまいました...こんなことならもうちょっとちゃんと作っておけばよかった...
MIDIはわいえすさんの【MIDI】ようこそジャパリパークへ(けものフレンズOP)を耳コピしてみたです。ありがとうございます。


その後セルリアンの曲も投稿してみました。



今回は前回の反省点を活かすとともに動画の最後の部分でちょっとしたテスラコイルの紹介を入れてみました。
この動画ではテスラを2本用意し、片方は普通のSSTCでメロディー、もう片方はQCWでドラム音という動作をさせています。
最後のしんざきおにいさんの曲ではQCWのほうにメロディーをやってもらい、放電に触るときだけQCWで手に放電を伸ばしてきてもらおうとか考えてたら普通の放電にあたってびっくりしました(池沼)
演奏データ作成は白河しらさんです。白河しらさんのファミコン実機音源で、けものフレンズのBGMを演奏 すごーい編を見てこれダッと思い直接お願いしてデータ頂いてしまいました...ホントすいません。ありがとうございます。

どちらの動画も結構伸びてうれしいですよ ご視聴ありがとうございます。

EMP缶クラッシャー

久しぶりにオイルコンデンサを引っ張り出してきたので、EMP缶クラッシャーやってみました。

EMP缶クラッシャーとは、空き缶にコイルを巻き、コイルに大電流を流すと缶が変形するというもの。アルミ缶には誘導電流が流れお互いに反発しあって缶がへこみます。海外勢なんかのすごいやつなんかはその力でアルミ缶を真っ二つにしてますね。
EMPはElectroMagnetic Pulseの略で日本語だと電磁パルスになります。

缶クラの回路構成はレールガンやコイルガンとほとんど同じで、コンデンサに電荷を貯めておいて大電流を瞬間的にコイルに流すようにします。
しかし缶クラは放電時間はそんなに必要なくて、とにかくピーク電流値が高い方が威力が出ます。そこでコンデンサの電圧を数kVにしたり、パルス放電特性の良いものを使ったりすることが多いようです。オイルコンはまさにそれで缶クラに向いています。電解コンでもできますが、あまり良くないと聞きます(実験してないので知らんです)

動画です。



2.8kV、250uFで1kJ近く投入しています。7セグのやつが電圧計です。
実はこのコンデンサ耐圧2kVなんですよね。

缶はこんな感じにへこみました。

DSC_2001

最近ドンパチしてなかったし久しぶりにやると楽しいです

コンデンサ充電用小型昇圧チョッパ

以前開発した昇圧チョッパプリント基板化してみました。
現在実質凍結状態の携行型レールガン用に作りましたが、普通にコイルガンやその他高電圧実験系でも遊べると思います。
出力は以前と同じ200Wで設計して回路構成の変更等もありませんが、パワー素子とコネクタ以外はすべて表面実装化して小型化を目指した感じです。

DSC_1881

部品を詰め込みすぎてシルクが潰れてしまってるので反省

こいつはメインのMOSFETとダイオードにSiC製品を使う予定でいるんですが、壊すと金銭的ダメージがヤバイので、とりあえず普通のシリコンのダイオード・MOSFETで試作してみました。コイルも仮のものです。
動作テスト中の様子ですが、いい感じに動いてくれません。

DSC_1886

原因はスイッチング時のノイズでマイコンあたりが誤作動してたようです。配線パターンの設計能力のなさを感じる...
MOSFETのゲート抵抗を大きくしてスイッチングノイズが小さくなるようにしてみましたが変わらず...
ダイオードのリカバリ電流が悪いんでは?と思って思い切ってをSiCダイオードに交換してみると、完璧に動いてくれてました。SiCすごいです。やっぱチョッパ系にはSiCショットキー最適なんですねぇ
マイコン9,10ピンをショートしてるのは仕様です。仕様です。

色々実験してるうちにメチャクチャ汚くなってしまったので

DSC_1893

新しい基板で作り直して完成です。

DSC_1907

見た目はいいよね!だいぶ気に入ってる
サイズは46x25x21mmで出力そのまま従来の約1/4以下まで小さくなりました。
まぁ大体はインダクタがつよいおかげです。インダクタンスも低いもの(15uH)にして小型化できました。マイコンの裏側にインダクタがあります(えぇ......)ガチ設計者から怒られるやつや
あとはどうせ数秒しか動かさないしそんな大きいヒートシンク要らないだろーーーーとかいって小さめのヒートシンクを使ったからです。とかいって多分30秒くらい動かしちゃって熱くなって壊しちゃうんだろうな(池沼) ガバガバ設計すぎる。
MOSFETとダイオードは基板と共締めしています。。
コネクタはマイコンへの書き込みと動作状態などの通信を兼ねています。穴がズレてるのはピンヘッダを差し込んだ時ガバガバせずにちょうどハマってくれるというものです。ぐりにゃんから教えてもらいました。


それで出力テストしてみると、どうがんばっても設計出力より20Wも低い180Wしかでないんですよ
実験してデータを取ると、出力電圧が200Vくらいのときには出力は何故か250W出るのに、380Vまで出すと180Wになってしまうことがわかりました。

↓実際のデータ コンデンサは1250uF
時間t[s]電圧V[V]エネルギーE[J]出力P[W]
0.120025250
0.226343.230625216.153125
0.331361.230625204.1020833
0.435076.5625191.40625
0.538190.725625181.45125

このことから多分インダクタのインダクタンス不足で十分に電圧が出力できてないんだと思います。(まぁ設計段階から薄々気づいてた)
試しに大きめのコイルで試してみたら普通に200W出てくれました。
それとノイズを抑えるためにゲート抵抗を大きくしたので、ドレイン電圧立ち上がりがぬるくなって一番美味しいところがうまく出力できてないというのもあると思います。
そんなこんなで現状で200W出すのは諦めました。今度もう少しインダクタンスの高いものを買ったら実験しようと思います。



出力は180Wで良いとして、とりあえず連続で負荷をかけてみると、5秒後くらいにMOSFETが壊れてしまいました。
3回くらいやらかして、今使ってるMOSFETは20A定格で普通にスペックが足りてないことに気づきました...
ということで30A定格のものを付けました。
TO-220パッケしか付けられない設計になってるのにTO-247パッケのものを付けたかったので無理やり外付けしました。

DSC_1964

再実験すると10秒以上動かしても大丈夫でした。

コンデンサ充電テストの動画です。緑のLEDは電源ランプで赤が動作中を示します。



コンデンサは360V2.5mFで162Jです。
電源ON後、数秒後に動作開始し360Vで動作停止するというプログラムにしています。
約900msで充電完了してるので大体180Wくらいですね。
発振周波数は約100kHzくらいで可聴域外ですが、どっかが共振してるのかしらんけどうっすらチュイーンって音が聞こえます(えぇ...)

あとはMOSFETをTO-220な強いやつにすればきれいに収まってくれそうですね。いやSiCMOSFETは買ってあるんだけど、壊すの怖くて使えないんだよね...
普通のMOSFETでも220パッケで600V40A近くの定格のものもあるので今度買おうと思います。もうMOSFETじゃなくてIGBTでもいい感じもするね
あとインダクタだね 小型で大電流でインダクタンス高めなのって売ってるかなぁ

進捗があったらまた記事書きます。

きばん

基板を発注して、先日届いたので紹介
今回は学校関係の基板が混じってる関係でスイッチサイエンスPCBに注文しました。

DSC_1871

開けるとこんな感じです。基板の後ろには領収書が入っています。
基板は真空パックされてました。

DSC_1872

中国格安基板業者は学校で基板を発注する際、安くても金銭関係で頼めない何ていうこともありますが、スイッチサイエンスなら中国並みの安さで領収書を付けてもらうことができます。
ただし、注文してから届くまでちょっとかかります。自分は15日程かかりました。

開けました。今回は白い基板にしてみました。

DSC_1962

いいね♡
(ちなみに白く潰してるのは学校関係のやつです)


ケチなのでいくつかの基板を一つにまとめて発注したので分離した後の基板の紹介をします。

・コンデンサ充電用昇圧チョッパ基板1
以前開発したチョッパをプリント基板化してみました。
これについてはまた後で記事書こうと思います
DSC_1881



・コンデンサ充電用昇圧チョッパ基板2
1のほうと殆ど変わりませんが、使用部品と部品配置が若干違います。もし1の方が動かなかったらこっちも作ってみるっていう保険です。
DSC_1947



・ゲートドライバ基板1
以前作ったゲートドライバをプリント基板化しました。
裏表にMOSFETを付けて2ch分作ったので、これ一つでGDTの駆動ができるようにしました。
ゲートドライバのゲートドライバも付けたので3.3Vや5V系から直接動かすことができます。
DSC_1959

作例
DSC_1956
DSC_1957


・ゲートドライバ基板2
1のほうから少し回路を変えて小型化したバージョンですが、損失が多いかもしれないです。試作です。
DSC_1953

作例
DSC_1951
DSC_1952



・PFC
以前作ったPFCをプリント基板化しました。
DSC_1891


以上です。
シルクや穴ズレ、傷などもなく基板の品質自体には不満はありませんでした。
あとは自分の設計ミス?で、チョッパ基板1なんかシルク文字が潰れたり見えなくなっちゃったりしてるのでもうちょっと余裕を持っておけばよかったです。まぁこの辺は経験な気がします...
それとパッド上に普通にビア開けちゃってますが趣味なので大目に見て(ゆるして)
全体的には満足です。

簡単にランプ波を作る

QCWDRSSTC用のランプ波(のこぎり波)簡単に作れるような回路を考えたので紹介します。
(違う用途で調べて来られた方は参考程度にしておいたほうがいいと思います...)

基本的にはコンデンサを定電流充電すると電圧が線形的に上がっていくことを利用します。

①定電流ダイオードを使う
回路です。

1

多分これが一番早いと思います。
定電流ダイオードで定電流充電し、MOSFETがONになるとコンデンサにたまった電荷を放電しランプ波にします。
これは一番簡単だとは思いますが、欠点がいっぱいあります

・充電電圧がVCC電圧に近づくと直線じゃなくなる
満充電付近になると、電流が流れにくくなって最後のほうが直線じゃなくなっちゃいます。なのでVCC-1Vくらい(CRDによる)までの電圧を使うようにすればきれいな直線が得られると思います。VCC電圧をちょっと高くしておくのもありだと思います(たぶんテスラなんか近くに12Vラインとか通ってるっしょ)

・ランプ波の傾きが変えにくい
傾きはコンデンサの容量を変えるかCRDの電流値を変えることでしか変えられません。両方とも半固定抵抗のようには可変できないのでピンポイントの値を見つけるのはなかなかめんどくさいと思います。

・QCW用のランプ波っぽくない(?)
QCW用ランプ波は、下の画像の左のような波形にしているものが多いです。しかしこの回路では右のような波形なのであまりよろしくないかもしれません。実際放電にどう影響するのか知りません。

3



②トランジスタを使う
回路です。

2

これはちょっとめんどくさくなりましたが基本的な部分は変わっていません。
まず上のPNPトランジスタがONになるとコンデンサの充電が開始されます。ベース電流は常に一定なので定電流充電をすることができます。
次は放電するときですが、上に書いたことと同じです。定電流で放電できるので、①で問題になっていた段々電圧を下げていくという動作ができます。
そしてこの回路はベース抵抗を可変させることでランプ派の傾きを変えることができます。PNP側の抵抗を変えれば立ち上がりの傾きを変えられるし、NPN側を変えれば立ち下がりが変えられます。
しかしこの回路にも欠点が

・トランジスタの種類や温度、個体差などで変わる
コレクタ電流はベース電流*hEFですが、hFEは様々な条件によって異なってきます。種類で変わるのはもちろんですが、同じ種類でも温度で変わったり、個体差もあります。なので回路を組んだら一回確認してみると良いと思います。

・ベース抵抗がデカい
大きめの抵抗を付けてベース電流を小さくしているのですが、テスラコイルのノイズがこの部分に紛れたらガバガバになりそうですよね。大したことじゃないです。それだけです。






ということで実際に実験してみました。

①の回路
CRD=E-101(1mA)、MOSFET=2N7002、C=1uF、VCC=5V
黄色がランプ波で水色がMOSFETのゲート電圧

実験したけど画像撮り忘れました!!1
(今度実験したら撮っとくよ)

まぁまぁです。電源が5Vなのでコンデンサの電圧が3.5Vくらいで充電を止めてます。
ちなみにそのまま充電していくと

実験したけど画像撮り忘れました!!!
(今度実験したら撮っとくよ)

こんな感じで最後のほうが曲線になってしまうので注意が必要です。





②の回路
PNPTr=2SA1015GR、NPNTr=2SC1815GR、ベース抵抗PNP側=470kΩ、NPN側=100kΩ、C=1uF、VCC=5V

DS1Z_QuickPrint41

綺麗です。理想に近いと思います。

①と同じように充電を続けてみると、
※実験なので充電時間を長くしたと言うかコンデンサの容量を少なくしています

DS1Z_QuickPrint40

電源電圧のすぐ近くまで直線を維持できていますね。電源電圧まで達するとそれ以上は電圧は上がらないので上が平たくなっています。




と、こんなかんじで比較的楽にランプ波を作れたと思います。あとは入力パルス幅を調整したりする回路を設ければいいと思います
また、この回路は簡易的なものなので、ガチでやる場合はなんかちゃんとした定電流回路を使ったりそもそもマイコンから出力させたりすることをオススメします
5000兆円欲しい!