ぽんず製造所

当ブログの記事を参考にして行った事により、いかなる不都合が発生としても当方は一切の責任を負いません。全て各自の自己責任でお願いします。

電子工作

ネタがない

最近は特に何もしてないです。書くネタもないので、今年咲いた秋月の彼岸花でも貼っておきます。去年買って植えたら咲いて今年も咲いたので2回目ですね。

9/12 気づいたら芽が出てました
DSC_0034

9/13 茎が伸びてる
DSC_0036

同日夜 朝と比べても伸びてきています
DSC_0043

9/14
DSC_0044

9/15 伸びるのが早いです
DSC_0048

9/16
DSC_0052

9/18 KKTと違って皮が剥けました。スルムケ! 身内ネタ失礼致しました
DSC_0071

9/19
DSC_0095
DSC_0097

9/20 そろそろ出そう
DSC_0106
DSC_0107

9/21 咲きました!
DSC_0112

9/22 それなりに咲いてきました
DSC_0121

9/24 満開です!
DSC_0135

9/28 数日後には枯れてしまいました。かなC
DSC_0143

9/29
DSC_0149

10/2 あーあ
DSC_0163

10/11 久しぶりに覗いてみると花の茎の根元からちっちゃい葉っぱがワサワサ出てきてました。かわいい。茎はまだなんか残ってます...
DSC_0208
DSC_0209


現在は茎の部分は消滅してめっちゃ葉っぱが大きくなっています。
今年もきれいな彼岸花でした。



話変わりまして某高専の文化祭に行ってきました。

Xe氏作 電気自動車...?
誘導電動機とインバータとバッテリをゴーカートに積んだそうです。試乗させてもらいましたが結構スピード出ます。3人乗っても大丈夫です。写真に写ってるのはXe氏とたまごさんです。これを3日で作ったって言うからヤバイ
DSC_0414


Xe氏作 電車...?
誘導電動機とインバータとバッテリをフレームに積んだそうです。試乗させてもらいましたが結構スピード出ます。
DSC_0417


タマゴさん作 DRSSTC
おっきいです。なんだかんだでこのサイズの稲妻を生で見るのは初めてなので興奮しました。
キーボードが用意されており誰でもテスラで演奏できるようになってました。
DSC_0410
Point Blur_20171104_142037

弾いてるのは作者本人です。テスラ作れてピアノ弾けてこの人つよい。回路構成もなかなかキチガイでなんで素子が潰れないであんなにもよく放電するのか不思議です。


ここは特等席ですね!手を伸ばせばもう放電に当たりそうな場所です。
たまごさんによる生演奏です。



ジャパリまん
焼きごて作者はセンスないさん。なんと手動フライスでこの曲線を出したらしい。頭おかしい。
DSC_0420


Xe氏作 VVVFインバータ
不調だった模様で動いていませんでした...写真撮り忘れました。

代わりと言ってはなんですが、自分もなんとなくVVVFインバータ持ってったらなんか飛び入り展示してしまいました。
DSC_0431

ぶん回してんのはできたてほやほやバーサライタです。テープではっつけてるのでいつぶっ飛んでいってもおかしくないです(危ない)
DSC_0435


そういえば加減速ボタンを作りまして適当に回して遊べるようにしました。プログラムにはとりあえずいろんなVVVFパターン入れておきました



文化祭非常に楽しかったです

VVVFインバータ作った

前から作ってみたいと思っていた三相インバータ、いわゆるVVVFインバータを作ってみました。VVVFといえば電車のあの独特な音、アレを聞きたいんです。

プリント基板発注しました。
DSC_0398
DSC_0399

黒基板いいですよね。本当はつや消し黒が良かったですがちょっと高かった。

電動機はAC200V駆動ですが、AC100Vから動かせるように倍電圧整流...ではなくPFCを搭載しました。
インバータ部はハーフブリッジドライバを使用したもので特に変わったことはないです。
制御はいろいろ応用ができるよう、基板にマイコン等は搭載せず、外部から直接三相の信号を入力するようになっています。各相に電流センサも付けたので本格的な制御とかして遊べそうです。ついでに信号入力、電流検出出力は絶縁されているので安心です。あと絶縁DCDCも積めるようになっていて、ゲトドラ用電源から制御用電源も生成できます。


まずはインバータ部だけ作ってみてテストしてみます。
素子は裏につけるようになっています。
DSC_0234
DSC_0240

まぁもちろん死ぬわけ(原因不明
死んだ素子は足を曲げておくとわかりやすいです
DSC_0401

素子が悪そうなのでいろいろな素子で試してみてるところです。
DSC_0231

時間がなかったので結局IGBT使ってゴリ押しすることにしました......
DSC_0233

無事に動いてくれましたのでPFC部も作ってフラックス洗浄しました。PFCはNCP1654を使用したものです。
DSC_0384

基板の下に放熱器と称したアルミ板をくっつけ、その下にインレット、ヒューズ、スイッチ、ゲート用電源を載せて完成です。いろいろ雑ですがもう本当に時間がなかった
DSC_0392

素子はほぼ発熱しないのでこの程度のアルミ板でも十分のようです。

制御には最初PICマイコンを使おうと思っていましたが、処理能力が足りなかったのでMbedを使うことにしました。初めての32bitマイコン、初めてのMbedでしたが、1日で基本的なことが覚えられたのでMbedは素晴らしいと思います。
なおボードはぐり氏設計のLPCXpresso11U68互換ボードです。設計ミスがあるということで安く頂きました。
DSC_0402


そんなわけで動作確認です。
E231系の墜落インバータにしてるつもりです。

DSC_0379


1パルスモードに移行するときにガタンという振動が出てしまうのでその直前までの回転数までにしています。この振動は今後の課題ですね。
文化祭で展示するために急いで作ってなんとか回すことが出来て良かったです。暇があればもうちょっといろいろなところを改善したいです。

ふぇぇずしふと

1ヶ月くらい前のことですが、フェイズシフトフルブリッジ回路の実験をしてみました。
フェイズシフトフルブリッジというのは、フルブリッジ回路のアームごとの位相をずらして出力を可変できるというものです。

1


アームの位相が同じならば負荷に電流は流れません。

2


半分ずれた時は負荷には少しの期間だけ電流が流れます。

3


完全にずれた状態、つまり普通のフルブリッジの状態では常に電流が流れます。

4

出力可変ならPWMかなんかでやればいいじゃんと思われるかもしれませんが、フェイズシフトならデューティー比を50%固定で出力可変できるので、GDTなどPWMに向いていない回路で使用できます。
あとスイッチング損失を低減できたりするみたいです。



実験風景 きたない

DSC_2066

自分がこんな回路の実験するのはもちろんテスラコイルを作るためなのでほぼテスラコイルと同じような回路構成となっています。
適当なLとCで共振回路を組み、フルブリッジで駆動します。CTで共振電流をフィードバックして動かすようになっています。


波形です。
黄色と水色が各アームの出力(というかこれはゲート波形だけど)、ピンク色が電流波形です。

これは出力小=位相がほぼ同じ時の波形です。
位相が若干ずれてる程度で電流もそれほど流れていないのがわかります。

877


そしてこちらが出力最大=位相を完全にずらした時です。
電流が先程よりかなり流れてますね。

229


そんでもって全期間?を見た波形。
黄色に対して水色がずれてるのがわかります。電流値も小~大までありますね。

391


全体図。電流値を徐々に大きくしています。

278


んでもってQCW用の波形にしてみました。若干回路の調子が悪いです...

841

でもまぁいい感じですね。
で、なんとなくこのままテスラの1次を駆動してみたら...

DFezineV0AAOsNQ

放電出ちゃった....

きばん

基板を発注して、先日届いたので紹介
今回は学校関係の基板が混じってる関係でスイッチサイエンスPCBに注文しました。

DSC_1871

開けるとこんな感じです。基板の後ろには領収書が入っています。
基板は真空パックされてました。

DSC_1872

中国格安基板業者は学校で基板を発注する際、安くても金銭関係で頼めない何ていうこともありますが、スイッチサイエンスなら中国並みの安さで領収書を付けてもらうことができます。
ただし、注文してから届くまでちょっとかかります。自分は15日程かかりました。

開けました。今回は白い基板にしてみました。

DSC_1962

いいね♡
(ちなみに白く潰してるのは学校関係のやつです)


ケチなのでいくつかの基板を一つにまとめて発注したので分離した後の基板の紹介をします。

・コンデンサ充電用昇圧チョッパ基板1
以前開発したチョッパをプリント基板化してみました。
これについてはまた後で記事書こうと思います
DSC_1881



・コンデンサ充電用昇圧チョッパ基板2
1のほうと殆ど変わりませんが、使用部品と部品配置が若干違います。もし1の方が動かなかったらこっちも作ってみるっていう保険です。
DSC_1947



・ゲートドライバ基板1
以前作ったゲートドライバをプリント基板化しました。
裏表にMOSFETを付けて2ch分作ったので、これ一つでGDTの駆動ができるようにしました。
ゲートドライバのゲートドライバも付けたので3.3Vや5V系から直接動かすことができます。
DSC_1959

作例
DSC_1956
DSC_1957


・ゲートドライバ基板2
1のほうから少し回路を変えて小型化したバージョンですが、損失が多いかもしれないです。試作です。
DSC_1953

作例
DSC_1951
DSC_1952



・PFC
以前作ったPFCをプリント基板化しました。
DSC_1891


以上です。
シルクや穴ズレ、傷などもなく基板の品質自体には不満はありませんでした。
あとは自分の設計ミス?で、チョッパ基板1なんかシルク文字が潰れたり見えなくなっちゃったりしてるのでもうちょっと余裕を持っておけばよかったです。まぁこの辺は経験な気がします...
それとパッド上に普通にビア開けちゃってますが趣味なので大目に見て(ゆるして)
全体的には満足です。

簡単にランプ波を作る

QCWDRSSTC用のランプ波(のこぎり波)簡単に作れるような回路を考えたので紹介します。
(違う用途で調べて来られた方は参考程度にしておいたほうがいいと思います...)

基本的にはコンデンサを定電流充電すると電圧が線形的に上がっていくことを利用します。

①定電流ダイオードを使う
回路です。

1

多分これが一番早いと思います。
定電流ダイオードで定電流充電し、MOSFETがONになるとコンデンサにたまった電荷を放電しランプ波にします。
これは一番簡単だとは思いますが、欠点がいっぱいあります

・充電電圧がVCC電圧に近づくと直線じゃなくなる
満充電付近になると、電流が流れにくくなって最後のほうが直線じゃなくなっちゃいます。なのでVCC-1Vくらい(CRDによる)までの電圧を使うようにすればきれいな直線が得られると思います。VCC電圧をちょっと高くしておくのもありだと思います(たぶんテスラなんか近くに12Vラインとか通ってるっしょ)

・ランプ波の傾きが変えにくい
傾きはコンデンサの容量を変えるかCRDの電流値を変えることでしか変えられません。両方とも半固定抵抗のようには可変できないのでピンポイントの値を見つけるのはなかなかめんどくさいと思います。

・QCW用のランプ波っぽくない(?)
QCW用ランプ波は、下の画像の左のような波形にしているものが多いです。しかしこの回路では右のような波形なのであまりよろしくないかもしれません。実際放電にどう影響するのか知りません。

3



②トランジスタを使う
回路です。

2

これはちょっとめんどくさくなりましたが基本的な部分は変わっていません。
まず上のPNPトランジスタがONになるとコンデンサの充電が開始されます。ベース電流は常に一定なので定電流充電をすることができます。
次は放電するときですが、上に書いたことと同じです。定電流で放電できるので、①で問題になっていた段々電圧を下げていくという動作ができます。
そしてこの回路はベース抵抗を可変させることでランプ派の傾きを変えることができます。PNP側の抵抗を変えれば立ち上がりの傾きを変えられるし、NPN側を変えれば立ち下がりが変えられます。
しかしこの回路にも欠点が

・トランジスタの種類や温度、個体差などで変わる
コレクタ電流はベース電流*hEFですが、hFEは様々な条件によって異なってきます。種類で変わるのはもちろんですが、同じ種類でも温度で変わったり、個体差もあります。なので回路を組んだら一回確認してみると良いと思います。

・ベース抵抗がデカい
大きめの抵抗を付けてベース電流を小さくしているのですが、テスラコイルのノイズがこの部分に紛れたらガバガバになりそうですよね。大したことじゃないです。それだけです。






ということで実際に実験してみました。

①の回路
CRD=E-101(1mA)、MOSFET=2N7002、C=1uF、VCC=5V
黄色がランプ波で水色がMOSFETのゲート電圧

実験したけど画像撮り忘れました!!1
(今度実験したら撮っとくよ)

まぁまぁです。電源が5Vなのでコンデンサの電圧が3.5Vくらいで充電を止めてます。
ちなみにそのまま充電していくと

実験したけど画像撮り忘れました!!!
(今度実験したら撮っとくよ)

こんな感じで最後のほうが曲線になってしまうので注意が必要です。





②の回路
PNPTr=2SA1015GR、NPNTr=2SC1815GR、ベース抵抗PNP側=470kΩ、NPN側=100kΩ、C=1uF、VCC=5V

DS1Z_QuickPrint41

綺麗です。理想に近いと思います。

①と同じように充電を続けてみると、
※実験なので充電時間を長くしたと言うかコンデンサの容量を少なくしています

DS1Z_QuickPrint40

電源電圧のすぐ近くまで直線を維持できていますね。電源電圧まで達するとそれ以上は電圧は上がらないので上が平たくなっています。




と、こんなかんじで比較的楽にランプ波を作れたと思います。あとは入力パルス幅を調整したりする回路を設ければいいと思います
また、この回路は簡易的なものなので、ガチでやる場合はなんかちゃんとした定電流回路を使ったりそもそもマイコンから出力させたりすることをオススメします
5000兆円欲しい!
Twitter
Twitterに大体います