ぽんず製造所

当ブログの記事を参考にして行った事により、いかなる不都合が発生としても当方は一切の責任を負いません。全て各自の自己責任でお願いします。

コイルガン

回生コイルガンを試してみた

なんか最近コイルガンが作りたくなってきたので、回生型コイルガンの回路を試作してみました。
回生コイルガンというのは、スイッチング時のサージを回収して次撃つ時の電力にしようっていうやつです。他にも利点は多々あるのですが面倒なので割愛します。
基本的にはHigashino氏の回路を参考にしていますが、ここにコイルの電流を測定して電流値を一定に制御するというもの取り入れてみました。
具体的には、シャント抵抗で電流を測定→コンパレータで基準値と比較→低ければON、高ければOFFというように素子をスイッチングします。
LTspice上の回路と波形。赤がMOSFETのゲート波形(上下のMOSFETとも同相)、緑がコイルの電流波形です。大体40A付近で定電流になるように制御されてますね。
Db86Q2gV0AI_gVH
キャプチャ


実際に作ったものがこちらです。
DSC_2661

撃ってみました。コイルはなんか奥の方から発掘した昔作ったやつです。通電時間5ms、電流30A、コンデンサ電圧360Vです。

意外と強かった。

コイル電流
DS1Z_QuickPrint3

コンデンサの電圧波形(水色)
(黄色はコイル電流(のようなもの)、ピンクがMOSFETゲート波形)
DS1Z_QuickPrint4

コイルに電流が流れると電圧が下がっていきますが、流れを止めた後に若干電圧が上がっています。これが回生です。
今回に関しては威力がどうとか効率がどうとかというよりも回路を試してみたかったのでこれでよしとします。

コンデンサ充電用小型昇圧チョッパ

以前開発した昇圧チョッパプリント基板化してみました。
現在実質凍結状態の携行型レールガン用に作りましたが、普通にコイルガンやその他高電圧実験系でも遊べると思います。
出力は以前と同じ200Wで設計して回路構成の変更等もありませんが、パワー素子とコネクタ以外はすべて表面実装化して小型化を目指した感じです。

DSC_1881

部品を詰め込みすぎてシルクが潰れてしまってるので反省

こいつはメインのMOSFETとダイオードにSiC製品を使う予定でいるんですが、壊すと金銭的ダメージがヤバイので、とりあえず普通のシリコンのダイオード・MOSFETで試作してみました。コイルも仮のものです。
動作テスト中の様子ですが、いい感じに動いてくれません。

DSC_1886

原因はスイッチング時のノイズでマイコンあたりが誤作動してたようです。配線パターンの設計能力のなさを感じる...
MOSFETのゲート抵抗を大きくしてスイッチングノイズが小さくなるようにしてみましたが変わらず...
ダイオードのリカバリ電流が悪いんでは?と思って思い切ってをSiCダイオードに交換してみると、完璧に動いてくれてました。SiCすごいです。やっぱチョッパ系にはSiCショットキー最適なんですねぇ
マイコン9,10ピンをショートしてるのは仕様です。仕様です。

色々実験してるうちにメチャクチャ汚くなってしまったので

DSC_1893

新しい基板で作り直して完成です。

DSC_1907

見た目はいいよね!だいぶ気に入ってる
サイズは46x25x21mmで出力そのまま従来の約1/4以下まで小さくなりました。
まぁ大体はインダクタがつよいおかげです。インダクタンスも低いもの(15uH)にして小型化できました。マイコンの裏側にインダクタがあります(えぇ......)ガチ設計者から怒られるやつや
あとはどうせ数秒しか動かさないしそんな大きいヒートシンク要らないだろーーーーとかいって小さめのヒートシンクを使ったからです。とかいって多分30秒くらい動かしちゃって熱くなって壊しちゃうんだろうな(池沼) ガバガバ設計すぎる。
MOSFETとダイオードは基板と共締めしています。。
コネクタはマイコンへの書き込みと動作状態などの通信を兼ねています。穴がズレてるのはピンヘッダを差し込んだ時ガバガバせずにちょうどハマってくれるというものです。ぐりにゃんから教えてもらいました。


それで出力テストしてみると、どうがんばっても設計出力より20Wも低い180Wしかでないんですよ
実験してデータを取ると、出力電圧が200Vくらいのときには出力は何故か250W出るのに、380Vまで出すと180Wになってしまうことがわかりました。

↓実際のデータ コンデンサは1250uF
時間t[s]電圧V[V]エネルギーE[J]出力P[W]
0.120025250
0.226343.230625216.153125
0.331361.230625204.1020833
0.435076.5625191.40625
0.538190.725625181.45125

このことから多分インダクタのインダクタンス不足で十分に電圧が出力できてないんだと思います。(まぁ設計段階から薄々気づいてた)
試しに大きめのコイルで試してみたら普通に200W出てくれました。
それとノイズを抑えるためにゲート抵抗を大きくしたので、ドレイン電圧立ち上がりがぬるくなって一番美味しいところがうまく出力できてないというのもあると思います。
そんなこんなで現状で200W出すのは諦めました。今度もう少しインダクタンスの高いものを買ったら実験しようと思います。



出力は180Wで良いとして、とりあえず連続で負荷をかけてみると、5秒後くらいにMOSFETが壊れてしまいました。
3回くらいやらかして、今使ってるMOSFETは20A定格で普通にスペックが足りてないことに気づきました...
ということで30A定格のものを付けました。
TO-220パッケしか付けられない設計になってるのにTO-247パッケのものを付けたかったので無理やり外付けしました。

DSC_1964

再実験すると10秒以上動かしても大丈夫でした。

コンデンサ充電テストの動画です。緑のLEDは電源ランプで赤が動作中を示します。



コンデンサは360V2.5mFで162Jです。
電源ON後、数秒後に動作開始し360Vで動作停止するというプログラムにしています。
約900msで充電完了してるので大体180Wくらいですね。
発振周波数は約100kHzくらいで可聴域外ですが、どっかが共振してるのかしらんけどうっすらチュイーンって音が聞こえます(えぇ...)

あとはMOSFETをTO-220な強いやつにすればきれいに収まってくれそうですね。いやSiCMOSFETは買ってあるんだけど、壊すの怖くて使えないんだよね...
普通のMOSFETでも220パッケで600V40A近くの定格のものもあるので今度買おうと思います。もうMOSFETじゃなくてIGBTでもいい感じもするね
あとインダクタだね 小型で大電流でインダクタンス高めなのって売ってるかなぁ

進捗があったらまた記事書きます。
5000兆円欲しい!
Twitter
Twitterに大体います