ぽんず製造所

当ブログの記事を参考にして行った事により、いかなる不都合が発生としても当方は一切の責任を負いません。全て各自の自己責任でお願いします。

誘導加熱

1石お手軽誘導加熱

Twitter上で誘導加熱が流行って(?)いたので自分も作ってみました。

DSC_0014

1石で動作する回路です。
IHクッキングヒーターや炊飯器、電子レンジのインバータなど、わりと身近にある家電に使われてる方式だったりします。

缶に水入れて沸騰させてみました。



電源には24Vの電源装置を使っています。本当はAC100V突っ込みたかったのですが、高耐圧な素子がなくて今のところ24Vで我慢しているところです。


基本的な回路図です。

1石共振

L1が加熱コイル、C1が共振コンデンサ、M1がメインのスイッチング素子です。
回路の簡単さでは自信があります。将来保護機能などの拡張も楽にできるようになっています。

まず、「動作開始」と書いてある電源から一瞬電圧が出力されると、回路が動作し始めます。※一瞬(1usくらい?)じゃないと動作おかしくなるかも。
その先にあるORが1になると、さらにその先の「A」の回路に入力されます。この回路はパルスの立ち上がりエッジを検出する回路で、連続的に1が入力されても一瞬だけ1を出力してくれます。

赤:ORの出力(A回路の入力)
緑:A回路の出力
A回路


Aの回路の先にはSR-FFがあります。Sに1の信号が入力されるのでQが1、そしてMOSFETがONになります。そしてL1に電流が流れ始めます。
この時、MOSFETのドレインの電圧は(理想では)0Vです。ドレインの横にある分圧回路で分圧されたあと、コンパレータに入力されます。
そういえばこの分圧回路はあんまり分圧の意味をなしていません、どちらかと言うと高電圧が入力された場合にはダイオードを通ってクランプされるような動作をします。
話を戻しますと、コンパレータの-には分圧された0V、+に基準用の電圧がかかるのでコンパレータの出力は1となり、ORに入力されます。
今度は「B」の回路を見てみましょう。ORの出力が1のとき、50kΩの抵抗を通ってじわじわと1000pFのコンデンサに充電されていきます。電圧が上がっていき、しばらくするとその先にあるSR-FFの閾値に到達し、Rが1と判定されるのでQが0になり、素子がOFFになります。
つまり50kΩと1000pFの大きさで素子をONしている期間を決定しています。
(ちなみにこの時Aの回路は一瞬だけ1になるのでORの出力が1でもAの出力は0になっています)

赤:ORの出力(B回路の入力)
緑:B回路の出力
B回路


素子がOFFになるとL1の電流も途切れたいところですが、そういうわけにはいかず、かわりにC1へ電流が流れていきます。これでなんとなくL1とC1で共振します。
この時はD電圧は高電圧になってるので、コンパレータは出力0となり、Aの回路もBの回路も出力0なので、SR-FFは変わらず素子はOFFのままです。

L1とC1が共振するとなんかしらんが勢いで勝手にドレイン電圧が0Vまで戻ってくる点があります。
この0Vになった瞬間、コンパレータが1となり、SR-FFが1、そしてMOSFETがONになります。
このようにして発振が続いていきます。

そして注目してもらいたいのが素子のON/OFF時のドレイン電圧です。
ターンオフ時はC1に充電される時間があるため、いきなりドレイン電圧が上がることはなく、0Vから徐々に電圧が上がっていきます。その後、共振で0Vまで戻ってきます。今度はこの点で素子をONにします。
要するにうまいことZVS動作をしていて素子のスイッチング損失がほとんどゼロにできるんです。考えた人頭いいですよね...

赤:ドレイン電圧
緑:ゲート電圧
zvs


「動作開始」は一瞬電圧を出力します。こいつがないと発振が開始しません。
コンパレータの基準用電源はZVSタイミングの調整と、MOSFETのRdsやIGBTのVce_Satの対策みたいなものです。
分圧後のコンパレータへの入力なんですが、寄生容量のせいでなんか遅れ気味になっちゃうみたいです...。自分のやつはこれが逆にいい感じの動作をしてくれててZVSタイミングを調整できます。でも寄生容量利用するとか気持ちわりぃよね

素子のON時間の設定はBの回路の抵抗値で調整できるのでここを半固定抵抗またはボリュームにして出力の調整をすることが出来ます。B回路の後ろにコンパレータくっつけても良いかもしれません。
ただしあんまりON時間を短くしすぎると周波数が高くなったり、電流があまり流れなくなってドレイン電圧が0Vまで戻ってこなくて発振が止まっちゃったりするので注意です。

また、上記の回路はすごく基本的な部分だけの回路図なので何の機能もついていません。過電圧・過電流検出回路をつけたり、動作/停止の制御もできると良いかもしれませんね。
あと回路図上ではゲートドライバも省略してるので実際作る時は付けましょう。


自分は上記の制御回路をPICマイコン内に組み込んで簡単に仕上げました。IH本体の回路は中でロジック回路組むモジュールとコンパレータと周辺回路で完結してるので、マイコン的お仕事は動作開始のパルスを出すことしかしていません。

DSC_0012


この回路はZVS動作できるのが良いところですが、自分のは発熱が結構あるのでうまくZVS出来てないのかもしれないです。オシロで見た感じはまぁZVSどうなになってる気がするんですけどねぇ...。ON抵抗で普通に発熱してるだけかもしれないです。わかんないです。

黃:ゲート
青:D電圧
紫:D電流

077

なんか電流波形がひどいね
とりあえず簡単に作れたので満足しています。




===追記===
回路いじってたらもうちょっと簡単にできました。
基本構造は同じです。試作してないのでわかりませんが動きそうな気がします。
OR(A1)の後ろ~バッファ(A2)の間の部分で、立ち上がりエッジ検出とON時間のタイマーを兼ねました。真ん中の10kΩの抵抗(R2)を調整すれば出力可変(ON時間可変)できるはずです。
RS-FFが消えたのは大きいと思います。マイコンに組んだとしても外付け部品が少なくなるのは嬉しいことです。

キャプチャ

進捗なし

久しぶりに学習型コイルガン引っ張りだして遊んでましたね
コイル巻き直してみたり

1433335488280


学習結果
最適通電時間:18.73ms
初速:3m/sくらい
効率:約2%
カメラで弾速測ったから正確な弾速分からないけどどちらにせよ効率・初速低すぎ


あと久しぶりにレールガンで遊んでましたね

150621_142802 308

うん

何回か撃って
最高効率:2.36%
最高初速:486..4m/s
最高出力:55.2J
でした。 
一昔前まで効率0.1%(テキトー)でやったぜとかいってたのに今や効率2%超えは当たり前になってきてる気がする 
スチール缶2個貫通後後ろの木の板に刺さったりとかこれもうわかんねぇな
あとレールの電流の流し方を工夫して効率あげようとしたけどあんまり変わりませんでした(´へωへ`*)
お城ないからその工夫がうまく動いてるのかわからんのだけど


あとdominoにZVS
Inverter基板をもらったので作って動かしてみた
誘導加熱用コイルの外側にアルミ線で輪を作って溶かしてみました



溶けたの吹っ飛んできてアブネェ


うちの炊飯器が壊れたので分解 

1436941194369

見てるだけで美味しい...IGBTとか共振コンとか美味しいっす
いままでお疲れ様でした。君たちは僕のおもちゃとして第二の人生を歩んでもらうよ
 
炊飯器からリッツ線コイルも取れたので
ZVSInverterで動かす 
コイルの上にアルミホイル乗っけてみると浮いて面白いですw(ただし誘導加熱もされてるため熱くなるので注意)



こんな感じで過去作品で遊んでばっかりです
というか高校入ってからテストやらなんやらで忙しくてやる気も起きないのよね
進捗ダメです 
5000兆円欲しい!
Twitter
Twitterに大体います